Spatiotemporal expression of the selenoprotein P gene in postimplantational mouse embryos.
نویسندگان
چکیده
Selenoprotein P (Sepp) is an extracellular glycoprotein which functions principally as a selenium (Se) transporter and antioxidant. In order to assess the spatiotemporal expression of the Sepp gene during mouse embryogenesis, quantitative RT-PCR and in situ hybridization analyses were conducted in embryos and extraembryonic tissues, including placenta. Sepp mRNA expression was detected in all embryos and extraembryonic tissues on embryonic days (E) 7.5 to 18.5. Sepp mRNA levels were high in extraembryonic tissues, as compared to embryos, on E 7.5-13.5. However, the levels were higher in embryos than in extraembryonic tissues on E 14.5-15.5, but were similar in both tissues during the subsequent periods prior to birth. According to the results of in situ hybridization, Sepp mRNA was expressed principally in the ectoplacental cone and neural ectoderm, including the neural tubes and neural folds. In whole embryos, Sepp mRNA was expressed abundantly in nervous tissues on E 9.5-12.5. Sepp mRNA was also expressed in forelimb and hindlimb buds on E 10.5-12.5. In the sectioned embryos, on E 13.5-18.5, Sepp mRNA was expressed persistently in the developing limbs, gastrointestinal tract, nervous tissue, lung, kidney and liver. On E 16.5-18.5, Sepp mRNA expression in the submandibular gland, whisker follicles, pancreas, urinary bladder and skin was apparent. In particular, Sepp mRNA was detected abundantly in blood cells during all the observed developmental periods. These results show that Sepp may function as a transporter of selenium, as well as an antioxidant, during embryogenesis.
منابع مشابه
P-107: The Effects of Cryotop Vitrification on Heat Shock Protein 72 Expression in Mouse 2-Cell Embryos by Nested Quantitative PCR
Background: The aim of the study was to compare the effects of two different concentrations of cryoprotectants by Cryotop vitrification on survival and Heat shock protein 72 (Hspa1a) expression of two-cell mouse embryos. Materials and Methods: Different cryoprotectants’ concentrations of the combination of dimethyl sulfoxide (DMSO) and ethylene glycol (EG) were used and compared with each other...
متن کاملP-117: Gene Expression and Developmental State of Mouse Cloned Embryos after Treatment with Histone Deacetylase Inhibitor,Suberoylanilide Hydroxamic Acid (SAHA)
Background: It is known that acetylation level of the nuclear histones in cloned embryos is lower compare to normally developed embryos. Histone deacetylas inhibitors (HDACi) with improvement of acetylation level in these embryos can affect embryo quality in pre-implantation stage and expression level of different genes especially developmental genes. Materials and Methods: In this research, SA...
متن کاملEffects of blastocyst artificial collapse prior to vitrification on hatching and survival rates and the expression of klf4 gene in mouse embryos
Although the rate of blastocysts implantation of embryos is higher than previous stages but their survival rate is lower than them, which could be attributed to the completely filled blastocoel cavity with liquid and increased possibility of the formation of ice crystals. This liquid could prevent the penetration of cryoprotecting materials into the embryos. In this study, we reduced the volume...
متن کاملP-31: Effect of Cryptop Vitrification on DNAMethylation Pattern of Oct4 and Mest Genes inMurine Preimplantation Embryos
Background: Because of the protection of surplus embryos, Cryopreservation is usually used in ART. It is not clear, the vitrified-warmed embryos that have normal morphology, be normal in genetic level, too. DNA methylation of gene regulatory regions can causes inhibition of gene expression. We study effect of vitrification method of cryopreservation on DNA methylation and gene expression level ...
متن کاملP-67: Quantitative Expression of Pluripotency Specific-Genes in Mouse Blastocysts Produced by In Vitro Fertilization
Background: The efficiency of in vitro fertilization (IVF) is still low to be developed to blastocyst stage probably because of environmental conditions. It is likely that in vitro environment can not exactly mimic in vivo environment due to differences in media, metabolic content, atmospheric composition, temperature and pH. Therefore it may affect embryo quality by changing in embryo gene exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The International journal of developmental biology
دوره 52 7 شماره
صفحات -
تاریخ انتشار 2008